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Introduction

Introduction

Consider an undirected graph G := (V ,E ) which consists of a set of
vertices V = {1, 2, . . . , d} connected by a set of edges E . An edge
(j , k) is an undirected edge joining vertices j and k respectively.

Associate each vertex j ∈ V , a random variable Xj , taking values in
Xj , and consider the joint probability distribution P of the
d-dimensional random vector X = (X1,X2, . . . ,Xd).

We are interested in the connection between the structure of P and the
underlying graph G. There are two ways to connect the probabilistic and
graphical structures: one based on factorization, and the second based on
conditional independence properties.

Hammersley Clifford Theorem

Factorization = conditional independence
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Introduction

Defintions

Clique /klēk,klik/

a small group of people, with shared interests or other features in common,
who spend time together and do not readily allow others to join them.

Clique - the useful version

A subset of vertices that are all joined by edges. For all distinct vertices
(j , k) ∈ C , there exists a (j , k) ∈ E . A maximal clique is a clique that is
not a subset of any other clique.

We denote C to denote the set of all cliques in G. Each vertex, by
definition, is a singleton clique.
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Introduction

Example

A = {1, 2, 3}
B = {3, 4, 5}
C = {5, 7}
D = {4, 6}

A,B,C, and D are all maximal cliques!
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Introduction Factorization

Factorization

For all C ∈ C , we use ψC to denote a function of the subvector
xC := {xj : j ∈ C}. We call ψC to be a clique compatibility function,
whose inputs are the cartesian product space Xc :=

⊗
j∈C Xj , and returns

a non-negative real number.

Factorization

The random vector (X1,X2, . . .Xd) factories according to graph G if its
density function P can be represented as:

p(x1, . . . , xd) ∝
∏
C∈C

ψC (xC ) (1)

for some collection of clique compatibility functions ψC : XC → 0 ∪R+
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Introduction Factorization

Factorization

In the above example, any density that factorizes according to graph G
must have the following form

p(x1, . . . , x7) ∝ ψ123(x1, x2, x3)ψ345(x3, x4, x5)ψ46(x4, x6)ψ57(x5, x7) (2)

WLOG, the product of cliques can always be restricted to the set of all
maximal cliques (by redefining the clique compatibility function as
necessary).

Kartik Ravisankar (UMD, AMSC) Graphical Models for high-dimensional data December 4, 2024 7 / 42



Introduction Factorization

Multivariate Gaussian Factorization

Consider a d-dimensional non-degenerate gaussian distribution with zero
mean (WLOG) can be parametrized by the precision matrix Θ := Σ−1 as
follows.

p(x1, . . . , xd ; Θ) =

√
det(Θ)

2πd/2
exp{−1

2
xTΘx} (3)

Upon expanding the quadratic form,

exp
{
−1

2

∑
(j ,k)∈E

Θjkxjxk
}
=

∏
(j ,k)∈E

exp{−1

2
Θjkxjxk} (4)

Gaussian factorization

If we define ψj ,k = e−
1
2
Θjkxjxk , any zero-mean Gaussian distribution can be

factorized in terms of functions on edges, or cliques of size two, even if
the underlying graph has higher order cliques.
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Introduction Factorization

Ising Model factorization

Ising is a theoretical model in statistical physics, that was originally
developed to describe ferromagnetism. (100 year anniversary this year)

Given an undirected graph G = (V ,E ), we have a factorization of the
form,

p(x1, x2, . . . , xd ; θ
∗) =

1

Z (θ∗)
exp

{∑
j∈V

θj
∗xj +

∑
(j ,k)∈E

θjk
∗xjxk

}
(5)
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Introduction Conditional Independence

Conditional Independence

Conditional Independence is an alternate approach to connect the
probabilistic and graphical structures, using certain conditional
independence statements defined by the graph.

Vertex cut set

Let S be the set of vertices, which when removed results in a
vertex-induced subgraph G (V \S) with vertices V \S and edges
E (V \S) := {(j , k) ∈ E |j , k ∈ V \S}. The set S is a vertex cutset if the
residual graph G (V \S) consists of two or more disconnected non-empty
components.
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Introduction Conditional Independence

Conditional Independence

S is a vertex cut set in the graph below, as V \S results in two disjoint
components A and B respectively.

Conditional Independence

For any subset A ⊆ V , let XA := (Xj , j ∈ A). For any three disjoint
subsets, say A, B, and S, of the vertex set V, we use XA |= XB |XS to mean
that the subvector XA is conditionally independent of XB given XS .
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Introduction Conditional Independence

Markov Property

Based on what we have learnt from cut sets, we define if a random vector
X is Markov with respect to graph G or not.

Markov property

A random vector X = (X1, . . . ,Xd) is Markov with respect to graph G , if
for all vertex cutsets S breaking the graph into two disjoint components
(A and B), the conditional independence XA |= XB |XS hold true.

Kartik Ravisankar (UMD, AMSC) Graphical Models for high-dimensional data December 4, 2024 12 / 42



Introduction Conditional Independence

Examples - Markov Chain

The Markov chain provides the simplest example. Consider a chain graph
on the vertex set V = {1, 2, . . . , d} containing the edges (j , j + 1)
∀j = 1, 2, . . . , d − 1. Each vertex j ∈ {2, 3, . . . , d − 1} acts as a cut set for

such a chain graph.
In the above figure,

2 splits the graph into 1 and 3,4,5.

3 splits the graph into 1,2 and 4,5.

4 splits the graph into 1,2,3 and 5.

These singleton cut sets essentially define the Markov property of a
Markov time series model, breaking the model into past and future states.
Given a current state Xj , the future states XF are conditionally
independent of the past states XP .
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Introduction Conditional Independence

Examples - Neighborhood-based cuts

For any vertex j ∈ V , we define a neighbourhood set
Nj = {k ∈ V |(j , k) ∈ E}.

N(j) is always a vertex cut set! A non-trivial one as long as j is not
connected to every other vertex.

It splits the graph into two disjoint components A = {j} and
B = {V \N(j) ∪ j}.
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Introduction Hammersley Clifford Equivalence

Theorem

HC Equivalence - Thm 11.8

For a given undirected graph and any random vector X = {X1,X2, . . . ,Xd}
with strict positive density p, the following properties are equivalent.

1 The random vector X factories according to the structure of the graph
G as referenced earlier.

2 The random vector X is Markov with respect to the graph G
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Introduction Hammersley Clifford Equivalence

Proof

Proof is done one-way. Factorization property =⇒ Markov property. We
prove this by defining three subsets of cliques. CA = {C ∈ C |C ∩ A ̸= ϕ},
CB = {C ∈ C |C ∩ B ̸= ϕ}, and CS = {C ∈ C |C ⊂ S}. We claim that
these 3 subsets form a disjoint partition of C .

Given any clique C, it is either contained entirely in S or it has a
non-trivial intersection with either A or B, thus proving the union
property.

It is obvious that CS is disjoint from CA and CB . If CA ∩ CB = C ,
then ∃(a, b) ∈ E such that a ∈ A and b ∈ B with (a, b) ∈ C . This is
not possible as S is a vertex cutset!
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Introduction Hammersley Clifford Equivalence

Proof (contd)

p(xA, xB , xS) =
1

Z

{ ∏
C∈CA

ψC (xC )

}{ ∏
C∈CB

ψC (xC )

}{ ∏
C∈CS

ψC (xC )

}
(6)

Define ZA(xS) =
∑

xA
ψA(xA, xS) and ZB(xB , xS) =

∑
xB
ψA(xB , xS). We

can obtain the marginals as follows:

p(xS) =
ZA(xS)ZB(xS)

Z
ψS(xS) (7)

p(xA, xS) =
ZB(xS)

Z
ψA(xA, xS)ψS(xS) (8)
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Introduction Hammersley Clifford Equivalence

Proof (contd)

p(xA, xB , xS)

p(xS)
=
ψA(xA, xS)ψB(xB , xS)

ZA(xS)ZB(xS)
(9)

p(xA, xS)

p(xS)
=
ψA(xA, xS)

ψS(xS)
(10)

p(xB , xS)

p(xS)
=
ψB(xB , xS)

ψS(xS)
(11)

Final result

p(xA, xB |xS) =
p(xA, xB , xS)

p(xS)
=

p(xA, xS)

p(xS)

p(xB , xS)

p(xS)
= p(xA|xS)p(xB |xS)

The other direction can be proven quite similarly but is not
presented in Wainwright.
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Estimation of Graphical Models Introduction

Typical problems

Consider samples x1, . . . , xn where each xi = (xi1, . . . , xid), drawn from a
graph-structured probability distribution.

Graphical model quandary

Graph structure G is known, and we want to estimate the
compatibility function ψC ,C ∈ C .

Graph structure is unknown, we need to estimate G (or specifically E )
and the clique compatibility functions.
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Estimation of Graphical Models Gaussian Graphical Models

Problem Setting

For a Gaussian graphical model, the factorization property can be
parametrized by the inverse covariance or precision matrix Θ∗ = Σ−1.
Based on HC equivalence, it ensures that Θ∗

jk = 0 where (j , k) /∈ E .

Since the mean can be easily estimated, we assume it to be 0 without loss
of generality. The problem then is the estimation of Θ∗. In cases, where
we need to estimate the graphical model, the goal is to estimate E. If we
denote the estimate as Ê and the corresponding covariance matrix Θ̂.
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Estimation of Graphical Models Gaussian Graphical Models

Unrestricted MLE

Using the precision matrix parametrization of multivariate gaussian
distribution, we get the negative log likelihood to be as follows: (upon
simplification and rescaling)

Ln(Θ) = ⟨⟨Θ, Σ̂⟩⟩ − log det (Θ) (12)

where Σ̂ =
1

n

∑n
i=1 xix

T
i

Unrestricted MLE Θ̂ = Σ̂−1, but in a high-dimensional setting, Σ is always
rank deficient and thus, MLE does not exist!.
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Estimation of Graphical Models Gaussian Graphical Models

Regularized L1 Graphical Lasso

When the graph G has few edges (sparse adjacency matrix), a natural
form of regularization is to impose an L1 constraint on the entries of Θ.
(Recall that while L0 is natural, L1 is used as a convex surrogate)

Θ̂ = argminΘ∈Sd×d

{
⟨⟨Θ, Σ̂⟩⟩ − log det (Θ) + λn∥Θ∥1,off

}
(13)

Here, the l1 norm is applied to the off-diagonal elements of Θ. One could
also imagine penalizing the diagonal entries of Θ, but since they must be
positive for any non-degenerate inverse covariance, doing so introduces
additional bias.
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Estimation of Graphical Models Gaussian Graphical Models

Can we find bounds?

Can we find bounds for ∥Θ̂−Θ∗∥F?

Frobenius norm bounds for graphical lasso

Suppose the matrix Θ∗ has at most m non zero entries per row, and

λn = 8σ2
(√

logd

n
+ δ

)
for some ∈ (0, 1]. Then, as long as

6(∥Θ∗∥2 + 1)2λn
√
md < 1, then the graphical lasso estimate Θ̂ satisfies

∥Θ∗ − Θ̂∥F ≤ 9mdλ2n
(∥Θ∗∥2 + 1)4

wp ≥ 1− 8e
−nδ2

16 (14)

A sample covariance matrix Θ̂ formed by n iid samples of a zero-mean
random vector in which each coordinate has σ sub Gaussian tails.
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Estimation of Graphical Models Gaussian Graphical Models

Key Results from Chapter 9

Subspace Lipschitz Constant

For any subspace S of Rd , the subspace Lipschitz constant with respect
to the pair (ϕ, ∥ · ∥) is given by:

ψ(S) = supu∈S\{0}
ϕ(u)

∥u∥
(15)

Restricted Strong Convexity

For a given norm ∥ · ∥ and a regularizer ϕ(·), the cost function satisfies
restricted strong convexity with radius R and curvature κ and tolerance τ2n
if

ϵn(∆) ≥ κ

2
∥∆∥2 − τ2nϕ

2(∆) ∀∆ ∈ B(R) (16)
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Estimation of Graphical Models Gaussian Graphical Models

Key Results from Chapter 9

Bounds for general models - 9.20

In addition to certain regularity conditions, the optimal parameter θ∗

belongs to M. Then any optimal solution θ̂ to the optimization problem
satisfies the bounds

ϕ
(
θ̂ − θ∗

)
≤ 6

λn
κ
ψ2(M̄) (17)

∥θ̂ − θ∗∥2 ≤ 9λ2nψ
2(M̄)

κ2
(18)
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Estimation of Graphical Models Gaussian Graphical Models

Key Results from Chapter 9

Regularity conditions

Cost function is convex and satisfies the local restricted strong
convexity (RSC) condition with curvature κ, radius R and tolerance
τ̂n wrt an inner product induced norm ∥ · ∥
∃ a pair of subspace M ⊆ M̄⊥ such that the regularizer decomposes
over (M,M⊥)

Corollary 9.20 holds for the regularity conditions and is conditioned on the
“good” event of the regularizer where the score function is not large in
terms of the dual norm ϕ∗

G (λn) =

{
ϕ∗(∇Ln(θ

∗)) ≤ λn/2

}
(19)
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Estimation of Graphical Models Gaussian Graphical Models

Proof - Verify Strong Convexity

Let BF (1) = {∆ ∈ Sd×d |∥∆∥F ≤ 1} denote the set of symmetric
matrices with Frobenius norm at most one.

Twice differentiable loss function

∇Ln(Θ) = Σ̂−Θ−1 and ∇2Ln(Θ) = Θ−1
⊗

Θ−1

For any ∆ ∈ BF (1), a Taylor series expansion (intermediate version) leads
to

Ln(Θ
∗+∆)−Ln(Θ) = ⟨⟨∇Ln(Θ

∗),∆⟩⟩+ 1

2
vec(∆)T∇2Ln(Θ

∗+t∆)vec(∆)

(20)

ϵn(∆) =
1

2
vec(∆)T∇2Ln(Θ

∗ + t∆)vec(∆) (21)

ϵn(∆) ≥ 1

2
γmin{∇2Ln(Θ

∗ + t∆)}∥vec(∆)∥2 (22)
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Estimation of Graphical Models Gaussian Graphical Models

Proof- Verifying Strong Convexity

For symmetric invertible matrix A, ∥A−1
⊗

A−1∥2 = 1
∥A∥2

ϵn(∆) ≥ 1

2

∥∆∥2F
∥Θ∗ + t∆∥2F

(23)

Employing the △ inequality in conjunction with t∥∆∥2 ≤ t∥∆∥F ≤ 1, we
get

ϵn(∆) ≥ 1

2(∥Θ∥2 + 1)2
∥∆∥2F (24)

24 proves that the loss function satisfies the RSC condition shown in 16
with κ = (∥Θ∥2 + 1)−2 and τn = 0
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Estimation of Graphical Models Gaussian Graphical Models

Proof - Subspace Lipschitz Constant

Next we introduce a subspace suitable for the application of 17 and 18 to
the graphical Lasso. Letting S denote the support set of Θ∗, we define the
subspace

M(S) = {Θ ∈ Rd×d |Θjk = 0 ∀ (j , k) /∈ E} (25)

With this choice of M(·), we get

ψ2(M(S)) = supΘ∈M(S)

(
∑

j ̸=k |Θjk |)2

∥Θ∥2F
≤ |S | ≤ md (26)

The last inequality holds as we allow for at most m non-zero entries per
row.
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Estimation of Graphical Models Gaussian Graphical Models

Proof - Verifying Event

Next, we need to verify the stated choice of the regularization parameter
λn satisfied the conditions of 17 and 18 with high probability.
Recall that ∇Ln(θ

∗) = Σ̂− Σ. The dual norm defined by ∥ · ∥1,off is the
L∞ norm on off-diagonal elements which we will denote as ∥ · ∥max ,off .
Using lemma 6.26 (without proof), we have

P(∥Σ̂− Σ∥max ,off ≥ σ2t) ≤ 8e
−n
16

min(t,t2)+2logd ∀t > 0 (27)

Setting t = λn/σ
2, we can verify that G (λn) is highly probable.

Proposition 9.13 implies that the error matrix ∆̂ satisfies the bound
∥∆Sc∥1 ≤ 3∥∆̂S∥1, and hence

∥∆̂∥1 ≤ ∥∆S∥1 ≤ 4
√
md∥∆̂∥F (28)

The second inequality holds true as |S | ≤ md (recall the number of
non-zero rows)
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Estimation of Graphical Models Gaussian Graphical Models

Localizing the error matrix

Recall from equation 24, we know that
−Ln(Θ

∗) + Ln(Θ
∗ +∆) + ⟨⟨∇Ln(Θ

∗ +∆),−∆⟩⟩ ≥ κ
2∥∆∥2F . Also,

Implications of strong convexity

If f is κ strongly convex around x:
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ κ

2∥y − x∥22 holds for all vectors z in a ball
B2 centered at x. B2(x) = {z
—z-x∥2 ≤ 1}, then

⟨∇f (y)−∇f (x), y − x⟩ ≥ κ

2
∥y − x∥2 (29)

Using the 29, we get

⟨⟨Ln(Θ∗ +∆)−∇Ln(Θ
∗),∆⟩⟩ ≥ κ∥∆∥F ∀∆ ∈ Sd×d\BF (1) (30)
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Estimation of Graphical Models Gaussian Graphical Models

Localizing the error matrix

Since Θ̂ is optimal, we have ⟨⟨∇Ln(Θ
∗ + ∆̂) + λnẐ , ∆̂⟩⟩ = 0, where

Ẑ ∈ ∂∥Θ∥1,off is a subgradient matrix for the elementwise L1 norm. By
adding and subtracting terms, we can find that

⟨⟨∇Ln(Θ
∗ + ∆̂)−∇Ln(Θ

∗), ∆̂⟩⟩ ≤ λn|⟨⟨Ẑ , ∆̂⟩⟩+ |⟨⟨∇Ln(Θ
∗), ∆̂⟩⟩| (31)

If ∥∆̂∥F ≥ 1, then from the LB of 29, we get

⟨⟨∇Ln(Θ
∗ + ∆̂)−∇Ln(Θ

∗), ∆̂⟩⟩ ≤
{
λn + ∥∇Ln(Θ

∗)∥max

}
∥∆̂∥1 (32)

Since ∥∇Ln(Θ
∗)∥max ≤ λn/2 under G (λn), the RHS is atmost

3λn
2 ∥∆̂∥1 ≤ 6λn

√
md∥∆∥F from 28.

From the 29, we get κ∥∆̂∥F ≤ 3λn
2 ∥∆̂∥1 ≤ 6λn

√
md∥∆̂∥F .

This leads to a contradiction whenever 6λn

√
md

κ < 1, thus proving that

∥∆̂∥F ≤ 1
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Estimation of Graphical Models Gaussian Graphical Models

Frobenius Norm Bound of Graphical Lasso

We were able to prove the frobenius norm bound of the gaussian graphical
lasso from corollary 9.20 in the text book, by verifying the necessary
regularity conditions hold true.

Frobenius Norm bound

∥Θ∗ − Θ̂∥F ≤ 9mdλ2n
(∥Θ∗∥2 + 1)4

wp ≥ 1− 8e
−nδ2

16

This is a crude result, and it only guarantees Θ̂ is close to Θ∗ with respect
to the Frobenius norm. Nothing is said about the edge structure of the
graph. The result precludes the setting n << d , as the proof implies that
imply that n must be lower bounded by a constant multiple of md log(d),
which is larger than d.
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Estimation of Graphical Models Gaussian Graphical Models

More practical result

We now turn to a more refined type of result, namely one that allows
for high-dimensional scaling (d >> n), and moreover guarantees that
the graphical Lasso estimate Θ̂ correctly selects all the edges of the
graph.

Such an edge selection result can be guaranteed by first proving that
Θ̂ is close to the true precision matrix Θ∗ in the element wise L∞
norm on the matrix elements (denoted by ∥ · ∥max).

This problem can also be converted to bounds on the L2 matrix
operator/spectral norm.

Edge selection in a Gaussian graphical model ≈ variable
selection in a sparse linear model
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Estimation of Graphical Models Gaussian Graphical Models

More practical result

Chugang spoke on Chapter 7 earlier this semester where we discussed
incoherence conditions which limits the influence of irrelevant
variables on relevant ones.

In the least squares regression setting, the incoherence condition was
imposed on the design matrix, or the hessian of the objective function.

We will follow the latter approach by imposing the condition on the
hessian of the loss function. ∇2Ln(Θ) = Θ−1

⊗
Θ−1. The

incoherence condition must be satisfied by the d2 dimensional matrix
Γ∗ = ∇2Ln(Θ

∗).
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Estimation of Graphical Models Gaussian Graphical Models

More practical result

Let S = E ∪ {(j , j)|j ∈ V }, the set of edges including (j , k), (k , j) and self
edges (j , j). Naturally, let Sc = {(V × V )\S}, then we say the matrix Γ∗

is α incoherent if

maxe∈Sc∥Γ∗es(Γ∗ss)−1∥1 ≤ 1− α for some α ∈ (0, 1] (33)

Proposition 11.10

Consider a d-dimensional gaussian distribution based α incoherent inverse
covariance matrix Θ∗. Given a sample size n > c0(1 + 8α−1)2m2log(d)

with λn = c1
α

√
logd
n + δ for some δin(0, 1]. Then with probability

1− c2e
−c3nδ2 , we have

Θ̂jk = 0 ∀(j , k) /∈ E

∥Θ̂−Θ∗∥max ≤ c4

{
(1 + 8α−1)

√
logd

n
+ λn

}
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Estimation of Graphical Models Gaussian Graphical Models

Consequences of proposition 11.10

The first part guarantees that Ê = {(j , k) ∈ [d ]× [d ], j < k, Θ̂jk ̸= 0}
is always a subset of true E.

The second part guarantees that Θ̂ is close to Θ elementwise.
Consequently, if we have a lower bound on the minimum non-zero
entry of |Θ∗| —namely the quantity τ∗(Θ∗) = min(j ,k)∈E |Θ∗

jk |, then
graphical lasso recovers the full edge set.

Proof involves the primal dual witness technique used in chapter 7
(Theorem 7.21) - Not presented in today’s lecture
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Estimation of Graphical Models Gaussian Graphical Models

Operator Norm Bounds

An extension of proposition 11.10 also provides us with operator norm
bounds.

Operator Norm Bound

Under the conditions of operator norm bounds, consider the graphical

estimate Θ̂ with regularization parameter λn = c1
n

√
logd
n + δ for some

δ ∈ (0, 1]. With probability 1− c2e
−c3nδ2 , we have

∥Θ̂−Θ∥2 ≤ c4∥A∥2
{
(1 + 8α−1)

√
logd

n
+ λn

}
(34)

where A is the adjacency matrix of the graph G (including the ones on the
diagonal or self-edges)
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Summary Topics covered

Topics covered

An introduction to the framework of graphical models

Factorization, Conditional independence and the equivalence between
the two definition (HC equivalence)

Gaussian Graphical Models

Frobenius Norm Bound - Proof using Corollary 9.20

Useful results involving sup and operator norms preserving edge
structure of G
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Summary Other topics

Other topics in Chapter 11

There are other topics presented in Chapter 11 which are not presented in
today’s lecture, which are extensions or generalizations of the Gaussian
graphical model. I recommend reading Chapter 11 in more detail if anyone
is interested in the following topics.

Neighborhood based methods - Gaussian Graphical Lasso is a global
method, which estimates the full graph simultaneously. Neighborhood
based methods are local, as it recovers the neighborhood N of each
vertex j ∈ V .

Non-Gaussian graphical model estimation (more general)

Graphs with imperfect information - corrupted or hidden variables
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Summary Thanks!

Thanks!

I thank Dr.Eric Slud and Dr.Vincet Lyzinski for organizing the RIT and
giving us the opportunity.
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Summary Thanks!

EOS
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